Parallel Analysis of 124 Universal SNPs for Human Identification by Targeted Semiconductor Sequencing
نویسندگان
چکیده
SNPs, abundant in human genome with lower mutation rate, are attractive to genetic application like forensic, anthropological and evolutionary studies. Universal SNPs showing little allelic frequency variation among populations while remaining highly informative for human identification were obtained from previous studies. However, genotyping tools target only dozens of markers simultaneously, limiting their applications. Here, 124 SNPs were simultaneous tested using Ampliseq technology with Ion Torrent PGM platform. Concordance study was performed with 2 reference samples of 9947A and 9948 between NGS and Sanger sequencing. Full concordance were obtained except genotype of rs576261 with 9947A. Parameter of FMAR (%) was introduced for NGS data analysis for the first time, evaluating allelic performance, sensitivity testing and mixture testing. FMAR values for accurate heterozygotes should be range from 50% to 60%, for homozygotes or Y-SNP should be above 90%. SNPs of rs7520386, rs4530059, rs214955, rs1523537, rs2342747, rs576261 and rs12997453 were recognized as poorly performing loci, either with allelic imbalance or with lower coverage. Sensitivity testing demonstrated that with DNA range from 10 ng-0.5 ng, all correct genotypes were obtained. For mixture testing, a clear linear correlation (R(2) = 0.9429) between the excepted FMAR and observed FMAR values of mixtures was observed.
منابع مشابه
Evaluation of ten SNP Markers for Human Identification and Paternity Analysis in Persian Population
Background: DNA markers are inevitable tools of human identification in forensic science. Single Nucleotide Polymorphisms (SNPs) are one category of these markers which is concerned to use especially in the case of degraded DNA because of their short amplicons. Objectives: Detection of highly informative SNPs by the criteria is the essential step to devel...
متن کاملIdentification of Novel SNPs in Glioblastoma Using Targeted Resequencing
High-throughput sequencing opens avenues to find genetic variations that may be indicative of an increased risk for certain diseases. Linking these genomic data to other "omics" approaches bears the potential to deepen our understanding of pathogenic processes at the molecular level. To detect novel single nucleotide polymorphisms (SNPs) for glioblastoma multiforme (GBM), we used a combination ...
متن کاملKinematic and Dynamic Analysis of Tripteron, an Over-constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach
In this research, as the main contribution, a comprehensive study is carried out on the mathematical modeling and analysis of the inverse kinematics and dynamics of an over-constraint three translational degree-of-freedom parallel manipulator. Due to the inconsistency between the number of equations and unknowns, the problem of obtaining the constraint forces and torques of an over-constraint m...
متن کاملAccurate detection and genotyping of SNPs utilizing population sequencing data.
Next-generation sequencing technologies have made it possible to sequence targeted regions of the human genome in hundreds of individuals. Deep sequencing represents a powerful approach for the discovery of the complete spectrum of DNA sequence variants in functionally important genomic intervals. Current methods for single nucleotide polymorphism (SNP) detection are designed to detect SNPs fro...
متن کاملO-8: Some Variations of the TSSK2 Gene May be Associated with Impaired Spermatogenesis
Background: Tssk2, a member of the testis specific serine/threonine kinase (TSSK) family, is expressed predominantly in the testis and crucial for the formation and function of the sperm cells in mouse. Targeted deletion of Tssk1 and 2 in male chimeric mice caused infertility due to haploinsufficiency of the genes. Therefore it is reasonable to postulate that mutations in its human homologue TS...
متن کامل